CEA/IFA Cooperation project C2-01

Development of innovative binders for the stabilization / solidification of low- and intermediate level radioactive wastes containing aluminium

IFA/IFIN-HH/Department of Radioactive Waste Management CEA /Laboratoire de Physico-Chimie des matériaux Cimentaires (LP2C) 01.03.2012-28.02.2015 The main purpose of the project is to design and characterize a stable cement-based matrix for conditioning radioactive waste containing **metallic aluminum** in view of storage or disposal in dedicated facilities by investigation of new **alternative cement systems**.

General work plan

2012	Literature review on alternative binders First research coordination project (France, July) Screening of binders
2013	Design of injection grouts based on the most promising binders Second research coordination project (Romania, June) Literature review on corrosion inhibitors
2014	Screening of corrosion inhibitors Optimisation of cement recipes Concluding meeting (France)

CEA /Laboratoire de Physico-Chimie des matériaux Cimentaires (LP2C) **Objectives (2012)**

- Screening of binders to minimize the hydrogen production of aluminium rod embedded in cement:
- Reference binder (OPC)
- Calcium sulfoaluminate cements (CSA)
- Blend of calcium aluminate cement and gypsum (CAC + Gypsum)
- Magnesium phosphate cements (MKP)
- Magnesium silicate cement (MSH)
- Compare the pH at early age by extraction of pore solution using pressure.

IFA/IFIN-HH/

Department of Radioactive Waste Management **Objectives (2012)**

- Selection of raw materials from Romanian market; determination of composition and structure.
- Development of fast and simple determination method for measurement for pH and pozzolanic activity in Ca(OH)₂ and Mg(OH)₂ media;
- Preliminary comparison of matrix properties with and without aluminium with CEM III A 42.5N-LH and CEM V A (S-V) as reference samples.

XRF analysis for CEM III-A and CEM V-A

Formula	Ζ	Concentration	
		CEM III	CEM V
CaO	20	61,21 %	54,65 %
SiO2	14	25,18 %	27,12 %
Al2O3	13	5,68 %	9,45 %
MgO	12	3,82 %	2,81 %
Fe2O3	26	2,37 %	4,14 %
K2O	19	0,74 %	0,96 %
Na2O	11	0,40 %	-
TiO2	22	0,32 %	0,56 %
MnO	25	0,23 %	0,22 %
SrO	38	0,05 %	0,05 %
ZnO	30	-	0,02%
ZrO2	40	-	0,01%

XRD Analysis for hydrated CEM III-A after 2 days

XRD Analysis for hydrated CEM V-A after 2 days

Preliminary comparison of matrix with and without aluminum

CEM III (W/C=0,4)

CEM III + 1% Retarder

CEM V (W/C=0,4)

CEM V + 1% Retarder

Galvanic corrosion with graphite

No galvanic corrosion with MKP binder at early age

Conclusion

Magnesium phosphate cement: most promising binder of the screening tests

Main concern with this kind of binder: control of the reactivity (rapid and exothermic acid-base reaction)

Key parameters: specific surface area of MgO retarding agents

Future studies

Design of a grout checking the criteria for a conditioning matrix (setting time, heat output, workability, mechanical strength, length change)